Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Materials (Basel) ; 16(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2304467

RESUMEN

Environmental surfaces, including high-touch surfaces (HITS), bear a high risk of becoming fomites and can participate in viral dissemination through contact and transmission to other persons, due to the capacity of viruses to persist on such contaminated surface before being transferred to hands or other supports at sufficient concentration to initiate infection through direct contact. Interest in the development of self-decontaminating materials as additional safety measures towards preventing viral infectious disease transmission has been growing. Active materials are expected to reduce the viral charge on surfaces over time and consequently limit viral transmission capacity through direct contact. In this study, we compared antiviral activities obtained using three different experimental procedures by assessing the survival of an enveloped virus (influenza virus) and non-enveloped virus (feline calicivirus) over time on a reference surface and three active materials. Our data show that experimental test conditions can have a substantial impact of over 1 log10 on the antiviral activity of active material for the same contact period, depending on the nature of the virus. We then developed an innovative and reproducible approach based on finger-pad transfer to evaluate the antiviral activity of HITS against a murine norovirus inoculum under conditions closely reflecting real-life surface exposure.

2.
Sci Transl Med ; 15(687): eade0550, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2251212

RESUMEN

The diversity of vaccination modalities and infection history are both variables that have an impact on the immune memory of individuals vaccinated against SARS-CoV-2. To gain more accurate knowledge of how these parameters imprint on immune memory, we conducted a long-term follow-up of SARS-CoV-2 spike protein-specific immune memory in unvaccinated and vaccinated COVID-19 convalescent individuals as well as in infection-naïve vaccinated individuals. Here, we report that individuals from the convalescent vaccinated (hybrid immunity) group have the highest concentrations of spike protein-specific antibodies at 6 months after vaccination. As compared with infection-naïve vaccinated individuals, they also display increased frequencies of an atypical mucosa-targeted memory B cell subset. These individuals also exhibited enhanced TH1 polarization of their SARS-CoV-2 spike protein-specific follicular T helper cell pool. Together, our data suggest that prior SARS-CoV-2 infection increases the titers of SARS-CoV-2 spike protein-specific antibody responses elicited by subsequent vaccination and induces modifications in the composition of the spike protein-specific memory B cell pool that are compatible with enhanced functional protection at mucosal sites.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
Nat Commun ; 13(1): 5108, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2016699

RESUMEN

The COVID-19 pandemic has exemplified that rigorous evaluation in large animal models is key for translation from promising in vitro results to successful clinical implementation. Among the drugs that have been largely tested in clinical trials but failed so far to bring clear evidence of clinical efficacy is favipiravir, a nucleoside analogue with large spectrum activity against several RNA viruses in vitro and in small animal models. Here, we evaluate the antiviral activity of favipiravir against Zika or SARS-CoV-2 virus in cynomolgus macaques. In both models, high doses of favipiravir are initiated before infection and viral kinetics are evaluated during 7 to 15 days after infection. Favipiravir leads to a statistically significant reduction in plasma Zika viral load compared to untreated animals. However, favipiravir has no effects on SARS-CoV-2 viral kinetics, and 4 treated animals have to be euthanized due to rapid clinical deterioration, suggesting a potential role of favipiravir in disease worsening in SARS-CoV-2 infected animals. To summarize, favipiravir has an antiviral activity against Zika virus but not against SARS-CoV-2 infection in the cynomolgus macaque model. Our results support the clinical evaluation of favipiravir against Zika virus but they advocate against its use against SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infección por el Virus Zika , Virus Zika , Amidas , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Macaca fascicularis , Pandemias , Primates , Pirazinas , SARS-CoV-2 , Infección por el Virus Zika/tratamiento farmacológico
4.
Curr Opin Pharmacol ; 62: 43-59, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2000360

RESUMEN

To face the COVID-19 pandemic, prophylactic vaccines have been developed in record time, but vaccine coverage is still limited, accessibility is not equitable worldwide, and the vaccines are not fully effective against emerging variants. Therefore, therapeutic treatments are urgently needed to control the pandemic and treat vulnerable populations, but despite all efforts made, options remain scarce. However, the knowledge gained during 2020 constitutes an invaluable platform from which to build future therapies. In this review, we highlight the main drug repurposing strategies and achievements made over the first 18 months of the pandemic, but also discuss the antivirals, immunomodulators and drug combinations that could be used in the near future to cure COVID-19.


Asunto(s)
COVID-19 , Vacunas , Reposicionamiento de Medicamentos , Humanos , Pandemias , SARS-CoV-2
5.
Biomed Pharmacother ; 150: 113058, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1814160

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with unprecedented economic and societal impact. Currently, several vaccines are available and multitudes of antiviral treatments have been proposed and tested. Although many of the vaccines show clinical efficacy, they are not equally accessible worldwide. Additionally, due to the continuous emergence of new variants and generally short duration of immunity, the development of effective antiviral treatments remains of the utmost importance. Since the emergence of SARS-CoV-2, substantial efforts have been undertaken to repurpose existing drugs for accelerated clinical testing and emergency use authorizations. However, drug-repurposing studies using cellular assays often identify hits that later prove ineffective clinically, highlighting the need for more complex screening models. To this end, we evaluated the activity of single compounds that have either been tested clinically or already undergone extensive preclinical profiling, using a standardized in vitro model of human nasal epithelium. Furthermore, we also evaluated drug combinations based on a sub-maximal concentration of molnupiravir. We report the antiviral activity of 95 single compounds and 30 combinations. We show that only a few single agents are highly effective in inhibiting SARS-CoV-2 replication while selected drug combinations containing 10 µM molnupiravir boosted antiviral activity compared to single compound treatment. These data indicate that molnupiravir-based combinations are worthy of further consideration as potential treatment strategies against coronavirus disease 2019 (COVID-19).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Mucosa Nasal , SARS-CoV-2
6.
Front Immunol ; 12: 714027, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1581346

RESUMEN

In the coronavirus disease 2019 (COVID-19) health crisis, one major challenge is to identify the susceptibility factors of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in order to adapt the recommendations for populations, as well as to reduce the risk of COVID-19 development in the most vulnerable people, especially patients with chronic respiratory diseases such as cystic fibrosis (CF). Airway epithelial cells (AECs) play a critical role in the modulation of both immune responses and COVID-19 severity. SARS-CoV-2 infects the airway through the receptor angiotensin-converting enzyme 2, and a host protease, transmembrane serine protease 2 (TMPRSS2), plays a major role in SARS-CoV-2 infectivity. Here, we show that Pseudomonas aeruginosa increases TMPRSS2 expression, notably in primary AECs with deficiency of the ion channel CF transmembrane conductance regulator (CFTR). Further, we show that the main component of P. aeruginosa flagella, the protein flagellin, increases TMPRSS2 expression in primary AECs and Calu-3 cells, through activation of Toll-like receptor-5 and p38 MAPK. This increase is particularly seen in Calu-3 cells deficient for CFTR and is associated with an intracellular increased level of SARS-CoV-2 infection, however, with no effect on the amount of virus particles released. Considering the urgency of the COVID-19 health crisis, this result may be of clinical significance for CF patients, who are frequently infected with and colonized by P. aeruginosa during the course of CF and might develop COVID-19.


Asunto(s)
Fibrosis Quística , Flagelina/metabolismo , Infecciones por Pseudomonas/complicaciones , Mucosa Respiratoria/virología , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo , COVID-19/complicaciones , Células Cultivadas , Humanos , Pseudomonas aeruginosa , Mucosa Respiratoria/metabolismo
7.
Cell Mol Life Sci ; 78(7): 3565-3576, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1384325

RESUMEN

Many studies on SARS-CoV-2 have been performed over short-time scale, but few have focused on the ultrastructural characteristics of infected cells. We used TEM to perform kinetic analysis of the ultrastructure of SARS-CoV-2-infected cells. Early infection events were characterized by the presence of clusters of single-membrane vesicles and stacks of membrane containing nuclear pores called annulate lamellae (AL). A large network of host cell-derived organelles transformed into virus factories was subsequently observed in the cells. As previously described for other RNA viruses, these replication factories consisted of double-membrane vesicles (DMVs) located close to the nucleus. Viruses released at the cell surface by exocytosis harbored the typical crown of spike proteins, but viral particles without spikes were also observed in intracellular compartments, possibly reflecting incorrect assembly or a cell degradation process.


Asunto(s)
SARS-CoV-2/crecimiento & desarrollo , Compartimentos de Replicación Viral/ultraestructura , Liberación del Virus/fisiología , Replicación Viral/fisiología , Animales , COVID-19/patología , Línea Celular , Chlorocebus aethiops , Microscopía Electrónica de Transmisión , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Compartimentos de Replicación Viral/fisiología
8.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1345702

RESUMEN

IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.


Asunto(s)
Autoanticuerpos/inmunología , COVID-19/inmunología , Interferón Tipo I/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Animales , Antivirales/inmunología , Antivirales/farmacología , Autoanticuerpos/sangre , COVID-19/sangre , COVID-19/virología , Chlorocebus aethiops , Femenino , Humanos , Interferón Tipo I/farmacología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Cavidad Nasal/inmunología , Cavidad Nasal/virología , Estudios Prospectivos , SARS-CoV-2/fisiología , Células Vero , Carga Viral/efectos de los fármacos , Carga Viral/inmunología , Replicación Viral/efectos de los fármacos , Replicación Viral/inmunología
9.
Cell ; 184(12): 3192-3204.e16, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1222850

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.


Asunto(s)
Anticuerpos Neutralizantes/química , Células Gigantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Sitios de Unión , Células CHO , COVID-19/patología , COVID-19/virología , Cricetinae , Cricetulus , Microscopía por Crioelectrón , Células Gigantes/citología , Humanos , Fusión de Membrana , Biblioteca de Péptidos , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
Molecules ; 26(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1217101

RESUMEN

There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Naproxeno/farmacología , Nucleoproteínas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Animales , Línea Celular , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Nucleoproteínas/metabolismo , SARS-CoV-2/fisiología , Células Vero , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
11.
PLoS Comput Biol ; 17(3): e1008785, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1181165

RESUMEN

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.


Asunto(s)
COVID-19/virología , Macaca fascicularis/virología , SARS-CoV-2/fisiología , Animales , Antivirales/farmacología , Número Básico de Reproducción , COVID-19/sangre , COVID-19/prevención & control , Citocinas/sangre , Modelos Animales de Enfermedad , Nasofaringe/virología , SARS-CoV-2/efectos de los fármacos , Tráquea/virología , Carga Viral , Replicación Viral/efectos de los fármacos
12.
Microorganisms ; 8(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1024610

RESUMEN

An increasing amount of evidence indicates a relatively high prevalence of superinfections associated with coronavirus disease 2019 (COVID-19), including invasive aspergillosis, but the underlying mechanisms remain to be characterized. In the present study, to better understand the biological impact of superinfection, we determine and compare the host transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) versus Aspergillus superinfection, using a model of reconstituted human airway epithelium. Our analyses reveal that both simple infection and superinfection induce strong deregulation of core components of innate immune and inflammatory responses, with a stronger response to superinfection in the bronchial epithelial model compared to its nasal counterpart. Our results also highlight unique transcriptional footprints of SARS-CoV-2 Aspergillus superinfection, such as an imbalanced type I/type III IFN, and an induction of several monocyte and neutrophil associated chemokines, that could be useful for the understanding of Aspergillus-associated COVID-19 and also the management of severe forms of aspergillosis in this specific context.

13.
bioRxiv ; 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: covidwho-920837

RESUMEN

In vitro antibody selection against pathogens from naïve combinatorial libraries can yield various classes of antigen-specific binders that are distinct from those evolved from natural infection 1-4 . Also, rapid neutralizing antibody discovery can be made possible by a strategy that selects for those interfering with pathogen and host interaction 5 . Here we report the discovery of antibodies that neutralize SARS-CoV-2, the virus responsible for the COVID-19 pandemic, from a highly diverse naïve human Fab library. Lead antibody 5A6 blocks the receptor binding domain (RBD) of the viral spike from binding to the host receptor angiotensin converting enzyme 2 (ACE2), neutralizes SARS-CoV-2 infection of Vero E6 cells, and reduces viral replication in reconstituted human nasal and bronchial epithelium models. 5A6 has a high occupancy on the viral surface and exerts its neutralization activity via a bivalent binding mode to the tip of two neighbouring RBDs at the ACE2 interaction interface, one in the "up" and the other in the "down" position, explaining its superior neutralization capacity. Furthermore, 5A6 is insensitive to several spike mutations identified in clinical isolates, including the D614G mutant that has become dominant worldwide. Our results suggest that 5A6 could be an effective prophylactic and therapeutic treatment of COVID-19.

14.
Cell Rep Med ; 1(4): 100059, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: covidwho-665121

RESUMEN

In the current COVID-19 pandemic context, proposing and validating effective treatments represents a major challenge. However, the scarcity of biologically relevant pre-clinical models of SARS-CoV-2 infection imposes a significant barrier for scientific and medical progress, including the rapid transition of potentially effective treatments to the clinical setting. We use reconstituted human airway epithelia to isolate and then characterize the viral infection kinetics, tissue-level remodeling of the cellular ultrastructure, and transcriptional early immune signatures induced by SARS-CoV-2 in a physiologically relevant model. Our results emphasize distinctive transcriptional immune signatures between nasal and bronchial HAE, both in terms of kinetics and intensity, hence suggesting putative intrinsic differences in the early response to SARS-CoV-2 infection. Most important, we provide evidence in human-derived tissues on the antiviral efficacy of remdesivir monotherapy and explore the potential of the remdesivir-diltiazem combination as an option worthy of further investigation to respond to the still-unmet COVID-19 medical need.


Asunto(s)
Antivirales/farmacología , Bronquios/virología , Nariz/virología , Mucosa Respiratoria/virología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Remodelación de las Vías Aéreas (Respiratorias) , Alanina/análogos & derivados , Alanina/farmacología , Animales , Bronquios/efectos de los fármacos , Bronquios/inmunología , Bronquios/ultraestructura , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Chlorocebus aethiops , Diltiazem/farmacología , Sinergismo Farmacológico , Humanos , Inmunidad Innata , Modelos Biológicos , Nariz/efectos de los fármacos , Nariz/inmunología , Nariz/ultraestructura , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/ultraestructura , SARS-CoV-2/crecimiento & desarrollo , Células Vero , Tratamiento Farmacológico de COVID-19
15.
Antiviral Res ; 181: 104878, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-645295

RESUMEN

In response to the current pandemic caused by the novel SARS-CoV-2, identifying and validating effective therapeutic strategies is more than ever necessary. We evaluated the in vitro antiviral activities of a shortlist of compounds, known for their cellular broad-spectrum activities, together with drugs that are currently under evaluation in clinical trials for COVID-19 patients. We report the antiviral effect of remdesivir, lopinavir, chloroquine, umifenovir, berberine and cyclosporine A in Vero E6 cells model of SARS-CoV-2 infection, with estimated 50% inhibitory concentrations of 0.99, 5.2, 1.38, 3.5, 10.6 and 3 µM, respectively. Virus-directed plus host-directed drug combinations were also investigated. We report a strong antagonism between remdesivir and berberine, in contrast with remdesivir/diltiazem, for which we describe high levels of synergy, with mean Loewe synergy scores of 12 and peak values above 50. Combination of host-directed drugs with direct acting antivirals underscore further validation in more physiological models, yet they open up interesting avenues for the treatment of COVID-19.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Reposicionamiento de Medicamentos , Pandemias , Neumonía Viral/tratamiento farmacológico , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Berberina/farmacología , COVID-19 , Chlorocebus aethiops , Cloroquina/farmacología , Infecciones por Coronavirus/virología , Ciclosporina/farmacología , Antagonismo de Drogas , Combinación de Medicamentos , Sinergismo Farmacológico , Humanos , Indoles/farmacología , Lopinavir/farmacología , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Tratamiento Farmacológico de COVID-19
16.
CPT Pharmacometrics Syst Pharmacol ; 9(9): 509-514, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-603799

RESUMEN

We modeled the viral dynamics of 13 untreated patients infected with severe acute respiratory syndrome-coronavirus 2 to infer viral growth parameters and predict the effects of antiviral treatments. In order to reduce peak viral load by more than two logs, drug efficacy needs to be > 90% if treatment is administered after symptom onset; an efficacy of 60% could be sufficient if treatment is initiated before symptom onset. Given their pharmacokinetic/pharmacodynamic properties, current investigated drugs may be in a range of 6-87% efficacy. They may help control virus if administered very early, but may not have a major effect in severely ill patients.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/fisiología , Antivirales/farmacología , Humanos , Lopinavir/farmacología , Lopinavir/uso terapéutico , Modelos Teóricos , Ritonavir/farmacología , Ritonavir/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Índice de Severidad de la Enfermedad , Singapur , Resultado del Tratamiento , Carga Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA